Recognition of the physiological actions of the triphasic EMG pattern by a dynamic recurrent neural network.

نویسندگان

  • Guy Cheron
  • Ana Maria Cebolla
  • Ana Bengoetxea
  • Françoise Leurs
  • Bernard Dan
چکیده

Triphasic electromyographic (EMG) patterns with a sequence of activity in agonist (AG1), antagonist (ANT) and again in agonist (AG2) muscles are characteristic of ballistic movements. They have been studied in terms of rectangular pulse-width or pulse-height modulation. In order to take into account the complexity of the EMG signal within the bursts, we used a dynamic recurrent neural network (DRNN) for the identification of this pattern in subjects performing fast elbow flexion movements. Biceps and triceps EMGs were fed to all 35 fully-connected hidden units of the DRNN for mapping onto elbow angular acceleration signals. DRNN training was supervised, involving learning rule adaptations of synaptic weights and time constants of each unit. We demonstrated that the DRNN is able to perfectly reproduce the acceleration profile of the ballistic movements. Then we tested the physiological plausibility of all the networks that reached an error level below 0.001 by selectively increasing the amplitude of each burst of the triphasic pattern and evaluating the effects on the simulated accelerating profile. Nineteen percent of these simulations reproduced the physiological action classically attributed to the 3 EMG bursts: AG1 increase showed an increase of the first accelerating pulse, ANT an increase of the braking pulse and AG2 an increase of the clamping pulse. These networks also recognized the physiological function of the time interval between AG1 and ANT, reproducing the linear relationship between time interval and movement amplitude. This task-dynamics recognition has implications for the development of DRNN as diagnostic tools and prosthetic controllers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK

In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience letters

دوره 414 2  شماره 

صفحات  -

تاریخ انتشار 2007